Abstract

We report a versatile mechanophore exhibiting a vividly detectable, light-regulable multicolor mechanochromism. Such optical features rely on the synergistic coupling of mechanochromic bis-rhodamine (Rh) and photochromic bisthienylethene (BTE). Poly(methyl acrylate)s incorporating this bis-mechanophore can be mechanically activated under sonication. The relative distribution of the two distinctly colored and fluorescent Rh ring-opening products is altered with different magnitudes of applied force. Orthogonal use of the photochromic reaction of the BTE core can strengthen the mechanochromism and gate the mechanofluorescence in polymers. Due to increased conjugation offered by the BTE linker, both force- and light-induced optical signals display high contrast. Combined DFT simulated and experimental results reveal that the three subunits (two Rhs and one BTE) in this chromophore are activated sequentially, thus generating switchable three-colored forms and gradient optical responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.