Abstract
Multicolor emissive carbon dots (M-CDs) have tremendous potential applications in manifold fields of bioimaging, biomedicine and light-emitting devices. Until now, it is still difficult to produce fluorescence tunable CDs with high quantum yield across the entire visible spectra. In this work, a type of M-CDs with concentration-tunable fluorescence and solvent-affected aggregation states was synthesized by solvothermal treatment of citric acid (CA) and 1-(2-pyridylazo)-2-naphthol (PAN) and the formation mechanism was monitored by different reaction time and raw material ratio. The fluorescence spectra of M-CDs in organic solvents can range from 350 to 750 nm by adjusting the concentration. M-CDs possess different aggregation states in water and organic solvents, accompanied by different fluorescence emission, which is attributed to the different surface states of various component CDs in M-CDs. Moreover, the obtained products can be uniformly dispersed into polymethylmethacrylate (PMMA) solutions as well as epoxy resins to fabricate transparent CDs/PMMA films and CDs/epoxy composites, which can effectively prevent the aggregation and produce multicolor and white light-emitting diodes (WLED). In addition, the prepared WLED with Commission Internationale de L’Eclairage (CIE) of (0.29, 0.31) by using M-CDs/epoxy resin as packages, demonstrating the M-CDs exhibit potential applications for light-emitting devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.