Abstract

As nanofabrication technology progresses, the emerging metasurface has offered unique opportunities for holography, such as an increased data capacity and the realization of polarization-sensitive functionality. Multicolor three-dimensional (3D) meta-hologram imaging is one of the most pursued applications for meta-hologram not yet realized. How to reduce the cross-talk among different colors in broad bandwidth designs is a critical question. On the basis of the off-axis illumination method, we develop a novel way to overcome the cross-talk limitation and achieve multicolor meta-holography with a single type of plasmonic pixel. With this method, the usable data capacity can also be improved. It not only leads to a remarkable image quality, with a signal-to-noise ratio (SNR) five times better than that of the previous meta-hologram designs, but also paves the way to new meta-hologram devices, which mark an advance in the field of meta-holography. For example, a seven-color meta-hologram can be fabricated with a color gamut 1.39 times larger than that of the red, green, and blue (RGB) design. For the first time, a full-color meta-holographic image in the 3D space is also experimentally demonstrated. Our approach to expanding the information capacity of the meta-hologram is unique, which extends broad applications in data storage, security, and authentication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call