Abstract

ABSTRACT The Cosmic Microwave Background (CMB) primordial B-mode signal is predicted to be much lower than the polarized Galactic emission (foregrounds) in any region of the sky pointing to the need for sophisticated component separation methods. Among them, the blind Needlet Internal Linear Combination (NILC) has great relevance given our current poor knowledge of the B-mode foregrounds. However, the expected level of spatial variability of the foreground spectral properties complicates the NILC subtraction of the Galactic contamination. We therefore propose a novel extension of the NILC approach, the Multiclustering NILC (MC-NILC), which performs NILC variance minimization on separate regions of the sky (clusters) properly chosen to have similar spectral properties of the B-mode Galactic emission within them. Clusters are identified thresholding either the ratio of simulated foregrounds-only B modes (ideal case) or the one of cleaned templates of Galactic emission obtained from realistic simulations. In this work we present an application of MC-NILC to the future LiteBIRD satellite, which targets the observation of both reionization and recombination peaks of the primordial B-mode angular power spectrum with a total error on the tensor-to-scalar ratio δr < 0.001. We show that MC-NILC provides a CMB solution with residual foreground and noise contamination that is significantly lower than the NILC one and the primordial signal targeted by LiteBIRD at all angular scales for the ideal case and at the reionization peak for a realistic ratio. Thus, MC-NILC will represent a powerful method to mitigate B-mode foregrounds for future CMB polarization experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.