Abstract

Based on quantum-inspired evolutionary algorithm (QEA), a novel approach of constructing multi-class least squares wavelet SVM (LS-WSVM) classifiers is presented, regularization parameters and kernel parameters of LS-WSVM can be optimized. Quantum-inspired evolutionary optimazition can get appropriate parameters of LS-WSVM with global search, so the LS-WSVM model for the multi-class classifiers is built. And then, classification is studied using LS-SVM with wavelet kernel and Gaussian kernel. The simulation results show that the approach for the multi-class LS-WSVM classifiers is effective, that can obtain the optimal parameters of LS-WSVM with global searching QEA, and improved LS-WSVM provides excellent precision for classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.