Abstract
In this article, we propose an efficient multiclass classification scheme based on sparse centroids classifiers. The proposed strategy exhibits linear complexity with respect to both the number of classes and the cardinality of the feature space. The classifier we introduce is based on binary space partitioning, performed by a decision tree where the assignation law at each node is defined via a sparse centroid classifier. We apply the presented strategy to the time series classification problem, showing by experimental evidence that it achieves performance comparable to that of state-of-the-art methods, but with a significantly lower classification time. The proposed technique can be an effective option in resource-constrained environments where the classification time and the computational cost are critical or, in scenarios, where real-time classification is necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.