Abstract

An efficient method for reliable multiclass pattern recognition using a bank of adaptive correlation filters is proposed. The method can recognize and classify multiple targets from an input scene by using both the intensity and phase distributions of the output complex correlation plane. The adaptive filters are synthesized with the help of an iterative algorithm based on synthetic discriminant functions with complex constraints. The algorithm optimizes the discrimination capability of the adaptive filters and determines the minimum number of filters in a bank to guarantee a desired classification efficiency. As a result, the computational complexity of the proposed system is low. Computer simulation results obtained with the proposed approach in cluttered and noisy scenes are discussed and compared with those obtained through existing methods in terms of recognition performance, classification efficiency, and computational complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.