Abstract
It is critical to establish a reliable method for detecting people infected with COVID-19 since the pandemic has numerous harmful consequences worldwide. If the patient is infected with COVID-19, a chest X-ray can be used to determine this. In this work, an X-ray showing a COVID-19 infection is classified by the capsule neural network model we trained to recognise. 6310 chest X-ray pictures were used to train the models, separated into three categories: normal, pneumonia, and COVID-19. This work is considered an improved deep learning model for the classification of COVID-19 disease through X-ray images. Viewpoint invariance, fewer parameters, and better generalisation are some of the advantages of CapsNet compared with the classic convolutional neural network (CNN) models. The proposed model has achieved an accuracy greater than 95% during the model's training, which is better than the other state-of-the-art algorithms. Furthermore, to aid in detecting COVID-19 in a chest X-ray, the model could provide extra information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.