Abstract

Background and ObjectiveThe detection and analysis of brain disorders through medical imaging techniques are extremely important to get treatment on time and sustain a healthy lifestyle. Disorders cause permanent brain damage and alleviate the lifespan. Moreover, the classification of large volumes of medical image data manually by medicine experts is tiring, time-consuming, and prone to errors. This study aims to diagnose brain normality and abnormalities using a novel ResNet50 modified Faster Regions with Convolutional Neural Network(R-CNN) model. The classification task is performed into multiple classes which are hemorrhage, hydrocephalus, and normal. The proposed model both determines the borders of the normal/abnormal parts and classifies them with the highest accuracy. MethodsTo provide a comprehensive performance analysis in the classification problem, Machine Learning(ML) and Deep Learning(DL) techniques were discussed. Artificial Neural Network(ANN), AdaBoost(AB), Decision Tree(DT), Logistic Regression(LR), Naive Bayes(NB), Random Forest(RF), and Support Vector Machine(SVM) were used as ML models. Besides, various Convolutional Neural Network(CNN) models and proposed ResNet50 modified Faster R-CNN model were used as DL models. Methods were validated using a novel brain dataset that contains both normal and abnormal images. ResultsBased on results, LR obtained the highest result among ML methods and DenseNet201 obtained the highest results among CNN models with the accuracy of 84.80% and 85.68% for the classification task, respectively. Besides, the accuracy obtained by the proposed model is 99.75%. ConclusionsExperimental results demonstrate that the proposed model has yielded better performance for detection and classification tasks. This artificial intelligence(AI) framework can be utilized as a computer-aided medical decision support system for medical experts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.