Abstract

Multi-Chromatic Analysis (MCA) of SAR images relays on exploring sub-band images obtained by processing portions of range spectrum located at different frequency positions. It has been applied to interferometric pairs for phase uwrapping and height computation. This work investigates two promising applications: the comparison between the frequency-persistent scatterers (PS fd ) and the temporal-persistent scatterers (PS), and the use of inter-band coherence of a single SAR image for vessel detection. The MCA technique introduces the concept of frequency-stable targets, i.e. objects exhibiting stable radar returns across the frequency domain which is complementary to that of temporal stability at the base of PS interferometry. Both spotlight and stripmap TerraSAR-X images acquired on the Venice Lagoon have been processed to identify PS fd and PS. Different populations have been analyzed to evaluate the respective characteristics and the physical nature of PS fd and PS. Concerning the spectral coherence, it is derived by computing the coherence between sub-images of a single SAR acquisition. In the presence of a random distribution of surface scatterers, spectral coherence must be proportional to sub-band intersection of sub-images. This model is fully verified when observing measured spectral coherence on open see areas. If scatterers distribution departs from this distribution, as for manmade structures, spectral coherence is preserved. We investigated the spectral coherence to perform vessel detection on sea background by using spotlight images acquired on Venice Lagoon. Sea background tends to lead to very low spectral coherence while this latter is preserved on the targeted vessels, even for very small ones. A first analysis shows that all vessels observable in intensity images are easily detected in the spectral coherence images which can be used as a complementary information channel to constrain vessel detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.