Abstract
Early identification of adolescents at high imminent risk for clinical depression could significantly reduce the burden of the disease. This study demonstrated that acoustic speech analysis and classification can be used to determine early signs of major depression in adolescents, up to two years before they meet clinical diagnostic criteria for the full-blown disorder. Individual contributions of four different types of acoustic parameters [prosodic, glottal, Teager's energy operator (TEO), and spectral] to depression-related changes of speech characteristics were examined. A new computational methodology for the early prediction of depression in adolescents was developed and tested. The novel aspect of this methodology is in the introduction of multichannel classification with a weighted decision procedure. It was observed that single-channel classification was effective in predicting depression with a desirable specificity-to-sensitivity ratio and accuracy higher than chance level only when using glottal or prosodic features. The best prediction performance was achieved with the new multichannel method, which used four features (prosodic, glottal, TEO, and spectral). In the case of the person-based approach with two sets of weights, the new multichannel method provided a high accuracy level of 73% and the sensitivity-to-specificity ratio of 79%/67% for predicting future depression.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.