Abstract
There is a growing interest in using the tactile modality as a compensation or sensory augmentation tool in various fields. The Multichannel Vibrotactile Glove was designed to meet the needs of these diverse disciplines and overcome the limitations of current sound-to-touch technologies. Using 12 independent haptic exciters on each finger's back and on the palm, the device can convey acoustic information to cutaneous vibrotactile receptors with precise control of the location, frequency, timing, and intensity. A staircase method was used to model vibration detection thresholds at six frequencies (100, 200, 250, 500, 800, 1000 Hertz) for each actuator position (All, Thumb, Index, Major, Middle, Pinky, Palm) and both hands (Right, Left). No between hand difference was observed and all finger actuators provided consistent thresholds, except for the Palm which exhibited higher thresholds. Spatial summation effects were observed when all actuators were activated simultaneously. Detection thresholds significantly increased at 100 Hertz and above 500 Hertz. These findings confirm that the system provides uniform stimulation across hands and actuators. Overall, the Multichannel Vibrotactile Glove provides the freedom to send various acoustic features to individual actuators, providing a versatile tool for research and a potential technology to substitute, compensate, or extend sensory perception.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.