Abstract

For the first time, we report a multichannel ceramic tubular membrane for water and heat recovery from gas streams. Mass and heat transfer performances of the multichannel tubular membrane are systematically investigated and compared with those of a monochannel tubular membrane. Compared with the monochannel tubular membrane, the multichannel membrane has much larger mass and heat transfer resistances, leading to lower mass and heat transfer rates. Operational parameters (e.g., fluid velocities and transmembrane pressure difference) have insignificant effects on mass and heat transfer in the multichannel membrane, suggesting that transfer resistance from the membrane itself rather than the boundary layers dominates mass and heat transfer in membrane condensation. The multichannel membrane shows larger volumetric mass and heat transfer coefficients, comparable water recoveries, but lower heat recoveries compared with the monochannel tubular membrane. Water and heat recoveries exhibit a proportional correla...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.