Abstract
Experiments are described in which a carbon dioxide laser oscillating at 28.4 THz has been modulated simultaneously by three commercial television signals with carriers at 54, 66, and 82 MHz. Signal-to-noise degradation in the system was measured to be less than 1 dB, corresponding to modulator drive power of 1 W. This combination of wide bandwidth and low power consumption was made possible by the application of coupling modulation. This technique employs an intracavity electrooptic crystal to which the modulating fields are applied. Despite the fact that the crystal is positioned inside the laser cavity, the maximum bandwidth attainable is independent of both the cavity Q and the laser transition linewidth, and is limited only by modulator characteristics and optical transit time. Rigrod's (1965) method has been adapted to obtain an expression for the power coupled out of the laser. Modulator frequency response and drive power requirements are also summarized. It is seen that the noise bandwidth performance of the system would allow simultaneous modulation by 17 color television channels, or equivalently, more than a 300-megabit/sec capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.