Abstract

The kinetics and mechanism of the gas-phase reactions between hydroxy methyl radical (CH(2)OH) or methoxy radical (CH(3)O) with hydroproxy radical (HO(2)) have been theoretically investigated on their lowest singlet and triplet surfaces. Our investigations indicate the presence of one deep potential well on the singlet surface of each of these systems that play crucial roles on their kinetics. We have shown that the major products of CH(2)OH + HO(2) system are HCOOH, H(2)O, H(2)O(2), and CH(2)O and for CH(3)O + HO(2) system are CH(3)OH and O(2). Multichannel RRKM-TST calculations have been carried out to calculate the individual rate constants for those channels proceed through the formation of activated adducts on the singlet surfaces. The rate constants for direct hydrogen abstraction reactions on the singlet and triplet surfaces were calculated by means of direct-dynamics canonical variational transition-state theory with small curvature approximation for the tunneling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.