Abstract
A reverse dictionary takes the description of a target word as input and outputs the target word together with other words that match the description. Existing reverse dictionary methods cannot deal with highly variable input queries and low-frequency target words successfully. Inspired by the description-to-word inference process of humans, we propose the multi-channel reverse dictionary model, which can mitigate the two problems simultaneously. Our model comprises a sentence encoder and multiple predictors. The predictors are expected to identify different characteristics of the target word from the input query. We evaluate our model on English and Chinese datasets including both dictionary definitions and human-written descriptions. Experimental results show that our model achieves the state-of-the-art performance, and even outperforms the most popular commercial reverse dictionary system on the human-written description dataset. We also conduct quantitative analyses and a case study to demonstrate the effectiveness and robustness of our model. All the code and data of this work can be obtained on https://github.com/thunlp/MultiRD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.