Abstract

We have developed a fully integrated multichannel polymerase chain reaction-capillary electrophoresis (PCR-CE) microdevice with nanoliter reactor volumes for highly parallel genetic analyses. Resistance temperature detectors and heaters made out of Ti/Pt are integrated on the microchip using a scalable radial design to provide precise temperature control of the four parallel PCR-CE reactor systems. Heating rates of >15 degrees C s(-1) and cooling rates of >10 degrees C s(-1) allow cycle times of 50 s and 30 complete PCR cycles in <27 min. PDMS membrane valves control and localize PCR reagents in the 380-nL reactors. By directly integrating PCR reactors with the CE separation system, efficient coupling of amplification with separation is achieved. The microdevice demonstrates good amplification uniformity and sensitivity down to 10 initial template copies in the 380-nL reactor (approximately 43 aM) with signal-to-noise ratio greater than 10. Parallel PCR-CE multiplex amplification and genetic analyses of four different samples with (1) both M13mp18 control template and E. coli K12 cells, (2) only M13mp18 template, (3) only E. coli K12 cells, and (4) negative control are completed in less than 30 min in a single run.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.