Abstract

Simultaneous detection of multi-biomarkers not only enhances the accuracy of disease diagnosis but also improves detection efficiency and reduces cost. It is vital to achieve portable, simple, low-cost, and simultaneous detection of biomarkers for point-of-care (POC) diagnostics in a low-resource setting. Herein, a multichannel paper chip-based gas pressure bioassay was developed for the simultaneous detection of multiple biomarkers by combining multichannel paper chips with a portable gas pressure meter. Four DNA tetrahedral probes (DTPs) were used as capture probes and were immobilized in different detection zones of the paper chips to improve hybridization efficiency and reduce nonspecific adsorption. The formation of a sandwich structure between target microRNAs (miRNAs), the capture probe, and platinum nanoparticles (PtNPs)-modified complementary DNA (PtNPs-cDNA) transformed biomolecular recognition into quantitative detection of gas pressure. Four lung cancer-related miRNAs were detected simultaneously by a portable gas pressure meter. There is a good linear relationship between gas pressure and the logarithm of miRNA concentration in the range of 10 pM to 100 nM. Compared with single-stranded DNA capture probe, the signal-to-noise (S/N) of DNA tetrahedral probes improved more than 3 times. Using ring-oven washing, the unbound reagents in all channels of the paper chip were simultaneously and continuously washed away, leading to a more cheap, simple, and fast separation than magnetic separation. Therefore, it offers a promising multichannel paper chip-based gas pressure bioassay for portable and simultaneous detection of multiple biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.