Abstract

We consider a class of nonlinear Schr6dinger equations (conservative and dispersive systems) with localized and dispersive solutions. We obtain a class of initial conditions, for which the asymptotic behavior (t ~ + oo) of solutions is given by a linear combination of nonlinear bound state (time periodic and spatially localized solution) of the equation and a purely dispersive part (decaying to zero with time at the free dispersion rate). We also obtain a result of asymptotic stability type: given data near a nonlinear bound state of the system, there is a nonlinear bound state of nearby energy and phase, such that the difference between the solution (adjusted by a phase) and the latter disperses to zero. It turns out that in general, the time-period (and energy) of the localized part is different for t ~ + ov from that+for t --. - or. Moreover the solution acquires an extra constant asymptotic phase e '~-.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.