Abstract

Tin (Sn)-based perovskites are increasingly attractive because they offer lead-free alternatives in perovskite solar cells. However, depositing high-quality Sn-based perovskite films is still a challenge, particularly for low-temperature planar heterojunction (PHJ) devices. Here, a "multichannel interdiffusion" protocol is demonstrated by annealing stacked layers of aqueous solution deposited formamidinium iodide (FAI)/polymer layer followed with an evaporated SnI2 layer to create uniform FASnI3 films. In this protocol, tiny FAI crystals, significantly inhibited by the introduced polymer, can offer multiple interdiffusion pathways for complete reaction with SnI2 . What is more, water, rather than traditional aprotic organic solvents, is used to dissolve the precursors. The best-performing FASnI3 PHJ solar cell assembled by this protocol exhibits a power conversion efficiency (PCE) of 3.98%. In addition, a flexible FASnI3 -based flexible solar cell assembled on a polyethylene naphthalate-indium tin oxide flexible substrate with a PCE of 3.12% is demonstrated. This novel interdiffusion process can help to further boost the performance of lead-free Sn-based perovskites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call