Abstract

Multichannel image completion with mixture noise is a common but complex problem in the fields of machine learning, image processing, and computer vision. Most existing algorithms devote to explore global low-rank information and fail to optimize local and joint-mode structures, which may lead to oversmooth restoration results or lower quality restoration details. In this study, we propose a novel model to deal with multichannel image completion with mixture noise based on adaptive sparse low-rank tensor subspace and nonlocal self-similarity (ASLTS-NS). In the proposed model, a nonlocal similar patch matching framework cooperating with Tucker decomposition is used to explore information of global and joint modes and optimize the local structure for improving restoration quality. In order to enhance the robustness of low-rank decomposition to data missing and mixture noise, we present an adaptive sparse low-rank regularization to construct robust tensor subspace for self-weighing importance of different modes and capturing a stable inherent structure. In addition, joint tensor Frobenius and l1 regularizations are exploited to control two different types of noise. Based on alternating directions method of multipliers (ADMM), a convergent learning algorithm is designed to solve this model. Experimental results on three different types of multichannel image sets demonstrate the advantages of ASLTS-NS under five complex scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call