Abstract

Incorporating deep neural networks in image compressive sensing (CS) receives intensive attentions in multimedia technology and applications recently. As deep network approaches learn the inverse mapping directly from the CS measurements, the reconstruction speed is significantly faster than the conventional CS algorithms. However, for existing network based approaches, a CS sampling procedure has to map a separate network model. This may potentially degrade the performance of image CS with block-wise sampling because of blocking artifacts, especially when multiple sampling rates are assigned to different blocks within an image. In this paper, we develop a multichannel deep network for block-based image CS by exploiting inter-block correlation with performance significantly exceeding the current state-of-the-art methods. The significant performance improvement is attributed to block-wise approximation but full image removal of blocking artifacts. Specifically, with our multichannel structure, the image blocks with a variety of sampling rates can be reconstructed in a single model. The initially reconstructed blocks are then capable of being reassembled into a full image to improve the recovered images by unrolling a hand-designed block based CS recovery algorithm. Experimental results demonstrate that the proposed method outperforms the state-of-the-art CS methods by a large margin in terms of objective metrics and subjective visual image quality. Our source codes are available at https://github.com/siwangzhou/DeepBCS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.