Abstract

We consider multichannel deconvolution in a periodic setting with long-memory errors under three different scenarios for the convolution operators, i.e., super-smooth, regular-smooth and box-car convolutions. We investigate global performances of linear and hard-thresholded non-linear wavelet estimators for functions over a wide range of Besov spaces and for a variety of loss functions defining the risk. In particular, we obtain upper bounds on convergence rates using the Lp-risk (1≤p<∞). Contrary to the case where the errors follow independent Brownian motions, it is demonstrated that multichannel deconvolution with errors that follow independent fractional Brownian motions with different Hurst parameters results in a much more involved situation. An extensive finite-sample numerical study is performed to supplement the theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.