Abstract

It is well known, both theoretically and experimentally, that the survival probability for an unstable quantum state, formed at t=0, is not a simple exponential function, even if the latter is a good approximation for intermediate times. Typically, unstable quantum states/particles can decay in more than a single decay channel. In this work, the general expression for the probability that an unstable state decays into a certain i-th channel between the initial time t=0 and an arbitrary t>0 is provided, both for nonrelativistic quantum states and for relativistic particles. These partial decay probabilities are also not exponential and their ratio turns out to be not a simple constant, as it would be in the exponential limit. Quite remarkably, these deviations may last relatively long, thus making them potentially interesting in applications. Thus, multichannel decays represent a promising and yet unexplored framework to search for deviations from the exponential decay law in quantum mechanical systems, such as quantum tunneling, and in the context of particle decays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call