Abstract

In some applications, the performance of multichannel Bragg cells is compromised by the spreading of the acoustic waves as they propagate; the spreading causes the signals in the channels to overlap. The overlapping can be significantly reduced by a spatial filter in a Fourier–image plane. The spatial filter is shown to be a cylindrical lens whose power is a function of the distance from the transducer. The effects of changes in the drive frequency as well as those of displacements of the filter are calculated. The reduction in the modulation transfer function as a function of propagation distance is calculated, and some bounds on the time–bandwidth product and the number of channels are dserived. In general, the overall performance can be improved by increasing the center frequency of the Bragg cell while keeping the bandwidth fixed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.