Abstract
This paper presents an algorithm for multichannel sound source separation using explicit modeling of level and time differences in source spatial covariance matrices (SCM). We propose a novel SCM model in which the spatial properties are modeled by the weighted sum of direction of arrival (DOA) kernels. DOA kernels are obtained as the combination of phase and level difference covariance matrices representing both time and level differences between microphones for a grid of predefined source directions. The proposed SCM model is combined with the NMF model for the magnitude spectrograms. Opposite to other SCM models in the literature, in this work, source localization is implicitly defined in the model and estimated during the signal factorization. Therefore, no localization preprocessing is required. Parameters are estimated using complex-valued nonnegative matrix factorization with both Euclidean distance and Itakura–Saito divergence. Separation performance of the proposed system is evaluated using the two-channel SiSEC development dataset and four channels signals recorded in a regular room with moderate reverberation. Finally, a comparison to other state-of-the-art methods is performed, showing better achieved separation performance in terms of SIR and perceptual measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.