Abstract
This article addresses the problem of multichannel audio source separation. We propose a framework where deep neural networks (DNNs) are used to model the source spectra and combined with the classical multichannel Gaussian model to exploit the spatial information. The parameters are estimated in an iterative expectation-maximization (EM) fashion and used to derive a multichannel Wiener filter. We present an extensive experimental study to show the impact of different design choices on the performance of the proposed technique. We consider different cost functions for the training of DNNs, namely the probabilistically motivated Itakura–Saito divergence, and also Kullback–Leibler, Cauchy, mean squared error, and phase-sensitive cost functions. We also study the number of EM iterations and the use of multiple DNNs, where each DNN aims to improve the spectra estimated by the preceding EM iteration. Finally, we present its application to a speech enhancement problem. The experimental results show the benefit of the proposed multichannel approach over a single-channel DNN-based approach and the conventional multichannel nonnegative matrix factorization-based iterative EM algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Audio, Speech, and Language Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.