Abstract

We propose and demonstrate a multichannel ±2 order orbital angular momentum (OAM) mode converter based on an elliptical-core helical intermediate-period fiber grating (E-HIPFG). By decreasing the grating pitch to ∼17.5 µm, ten wavelength channels are observed in the transmission spectrum of the E-HIPFG. Within the wavelength range of 1240-1650 nm, the ±2 order OAM modes are identified at each wavelength channel. The proposed E-HIPFG is ∼2.6 mm in length, which is more than one order of magnitude shorter than the conventional device, and thus may be more resistant to external disturbances, such as bending. Furthermore, the device exhibits an ultralow temperature drift of ∼5.84 pm/°C. Therefore, the proposed E-HIPFG can be a good candidate for a multichannel higher-order OAM mode converter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call