Abstract

We propose and demonstrate a multichannel ±2 order orbital angular momentum (OAM) mode converter based on an elliptical-core helical intermediate-period fiber grating (E-HIPFG). By decreasing the grating pitch to ∼17.5 µm, ten wavelength channels are observed in the transmission spectrum of the E-HIPFG. Within the wavelength range of 1240-1650 nm, the ±2 order OAM modes are identified at each wavelength channel. The proposed E-HIPFG is ∼2.6 mm in length, which is more than one order of magnitude shorter than the conventional device, and thus may be more resistant to external disturbances, such as bending. Furthermore, the device exhibits an ultralow temperature drift of ∼5.84 pm/°C. Therefore, the proposed E-HIPFG can be a good candidate for a multichannel higher-order OAM mode converter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.