Abstract

HypothesisAt selective liquid–liquid interface, amphiphilic homopolymers, having groups with different affinity for the liquids in each monomer unit, would demonstrate higher occupation of the interfacial layer than copolymers with various distributions of groups and be advantageous as interface stabilizers. ExperimentsBy means of Langevin dynamics computer simulation, conformations of multiple chains of amphiphilic macromolecules adsorbed at the liquid–liquid interface were studied. Monomer units having different affinity for the liquids were distributed variously along the polymer chains. Homopolymers, amphiphilic at the level of an individual monomer unit, and copolymers with random, altermating and multiblock distribution of groups were considered. The surface coverage, structure of the layer, and spatial distribution of monomer units were investigated depending on the polymer concentration. FindingsCompared to copolymers with random, alternating and multiblock distributions of the groups, the interfacial layer concentration of amphiphilic homopolymer is about 1.5 times higher, the adsorbed layer is remarkably thinner, has membrane-like structure and is asymmetric with respect to interface boundary. Also, the adsorbed amphiphilic homopolymers form fewer loops and tails, most located on one side of the interface. This combination of properties is promising for practical application in modern self-assembling molecular devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.