Abstract

AbstractThe oceanic absorption of anthropogenic carbon dioxide (CO2) is expected to continue in the following centuries, but the processes driving these changes remain uncertain. We studied these processes in a simulation of future changes in global climate and the carbon cycle following the RCP8.5 high emission scenario. The simulation shows increasing oceanic uptake of anthropogenic CO2 peaking towards the year 2080 and then slowing down but remaining significant in the period up to the year 2300. These multi‐century changes in uptake are dominated by changes in sea‐air CO2 fluxes in the tropical and southern oceans. In the tropics, reductions in upwelling and vertical gradients of dissolved carbon will reduce the vertical advection of carbon‐rich thermocline waters, suppressing natural outgassing of CO2. In the Southern Ocean, the upwelling of waters with relatively low dissolved carbon keeps the surface carbon relatively low, enhancing the uptake of CO2 in the next centuries. The slowdown in CO2 uptake in the subsequent centuries is caused by the decrease in CO2 solubility and storage capacity in the ocean due to ocean warming and changes in carbon chemistry. A collapse of the Atlantic Meridional Overturning Circulation (AMOC) predicted for the next century causes a substantial reduction in the uptake of anthropogenic CO2. In sum, predicting multi‐century changes in the global carbon cycle depends on future changes in carbon chemistry along with changes in oceanic and atmospheric circulations in the Southern and tropical oceans, together with a potential collapse of the AMOC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call