Abstract

The Cox proportional hazards model is one of the most widely used methods for analyzing survival data. Data from multiple data providers are required to improve the generalizability and confidence of the results of Cox analysis; however, such data sharing may result in leakage of sensitive information, leading to financial fraud, social discrimination or unauthorized data abuse. Some privacy-preserving Cox regression protocols have been proposed in past years, but they lack either security or functionality. In this paper, we propose a privacy-preserving Cox regression protocol for multiple data providers and researchers. The proposed protocol allows researchers to train models on horizontally or vertically partitioned datasets while providing privacy protection for both the sensitive data and the trained models. Our protocol utilizes threshold homomorphic encryption to guarantee security. Experimental results demonstrate that with the proposed protocol, Cox regression model training over 9 variables in a dataset of 113,035 samples takes approximately 44 min, and the trained model is almost the same as that obtained with the original nonsecure Cox regression protocol; therefore, our protocol is a potential candidate for practical real-world applications in multicenter medical research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call