Abstract

The objective of this study was to describe the total and unbound population pharmacokinetics of ceftriaxone in critically ill adult patients and to define optimized dosing regimens. Total and unbound ceftriaxone concentrations were obtained from two pharmacokinetic studies and from a therapeutic drug monitoring (TDM) program at a tertiary hospital intensive care unit. Population pharmacokinetic analysis and Monte Carlo simulations were used to assess the probability of achieving a free trough concentration/MIC ratio of ≥1 using Pmetrics for R. A total of 474 samples (267 total and 207 unbound) were available from 36 patients. A two-compartment model describing ceftriaxone-albumin binding with both nonrenal and renal elimination incorporating creatinine clearance to explain the between-patient variability best described the data. An albumin concentration of ≤20 g/L decreased the probability of target attainment (PTA) by up to 20% across different dosing regimens and simulated creatinine clearances. A ceftriaxone dose of 1 g twice daily is likely therapeutic in patients with creatinine clearance of <100 mL/min infected with susceptible isolates (PTA, ~90%). Higher doses administered as a continuous infusion (4 g/day) are needed in patients with augmented renal clearance (creatinine clearance, >130 mL/min) who are infected by pathogens with a MIC of ≥0.5 mg/L. The ceftriaxone dose should be based on the patient's renal function and albumin concentration, as well as the isolate MIC. Hypoalbuminemia decreases the PTA in patients receiving intermittent dosing by up to 20%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call