Abstract
In the realm of federated learning (FL), the conventional dual-layered architecture, comprising a central parameter server and peripheral devices, often encounters challenges due to its significant reliance on the central server for communication and security. This dependence becomes particularly problematic in scenarios involving potential malfunctions of devices and servers. While existing device-edge-cloud hierarchical FL (HFL) models alleviate some dependence on central servers and reduce communication overheads, they primarily focus on load balancing within edge computing networks and fall short of achieving complete decentralization and edge-centric model aggregation. Addressing these limitations, we introduce the multicenter HFL (MCHFL) framework. This innovative framework replaces the traditional single central server architecture with a distributed network of robust global aggregation centers located at the edge, inherently enhancing fault tolerance crucial for maintaining operational integrity amidst edge network disruptions. Our comprehensive experiments with the MNIST, FashionMNIST, and CIFAR-10 datasets demonstrate the MCHFL's superior performance. Notably, even under high paralysis ratios of up to 50%, the MCHFL maintains high accuracy levels, with maximum accuracy reductions of only 2.60%, 5.12%, and 16.73% on these datasets, respectively. This performance significantly surpasses the notable accuracy declines observed in traditional single-center models under similar conditions. To the best of our knowledge, the MCHFL is the first edge multicenter FL framework with theoretical underpinnings. Our extensive experimental results across various datasets validate the MCHFL's effectiveness, showcasing its higher accuracy, faster convergence speed, and stronger robustness compared to single-center models, thereby establishing it as a pioneering paradigm in edge multicenter FL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.