Abstract

While hydrogels are demonstrated to be effective scaffolds for soft tissue engineering, existing fabrication techniques pose limitations in terms of being able to reproduce both the micro/nanofibrous structures of native extracellular matrix as well as the spatial arrangement of different cell types inherent of more complex tissues. Herein, a reactive cell electrospinning strategy is described using hydrazide and aldehyde-functionalized poly(oligoethylene glycol methacrylate) precursor polymers that can create nanofibrous hydrogel scaffolds with controllable local cell gradients using a sequential all-aqueous process that does not require additives or external energy. Cells can be encapsulated directly during the fabrication process in different layers within the scaffold, enabling localized segregation of different cell types within the structures without compromising their capacity to proliferate (≈4-fold increase in cell density over a 14 day incubation period). This sequential reactive electrospinning approach thus offers promise to generate coculture fibrous hydrogel networks in which both the nanoscale architecture and the cell distribution can be controlled, as it is essential to recreate more complex types of tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.