Abstract

In this paper we developed the Multicell Thin-walled Method for Solid Multimaterial Beams, which combines structural idealization used in aircraft components, thin-walled beam theory and homogenization techniques from composite materials applied to discrete models, to obtain the cross-section stress fields of solid beams made of multiple orthotropic and isotropic materials. This method idealizes a solid multimaterial cross-section as a multicell thin-walled section to accurately obtain complex stress fields while significantly reducing the solution time, as well as the computational cost, when compared to classical 3D finite element analyses. This method was implemented in a computer program and three examples were analyzed to validate results with the finite element method. Both methods show almost identical results in regions not affected by local disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call