Abstract
By using destination stripping and shortest-path routing, the new standard IEEE 802.17 resilient packet ring (RPR) allows for spatial reuse, resulting in a significantly increased capacity compared to source-stripping legacy ring networks. We show that for multicast traffic the performance of RPR reduces to that of legacy ring networks that do not support spatial reuse. We propose a bandwidth-efficient and cost-sensitive multicast approach for RPR networks that exploits RPR's built-in topology discovery and supplementary time-to-live field to enable spatial reuse for multicast traffic. By means of analysis and simulation we investigate the proposed multicast approach in terms of transmission, multicast, and reception capacities as well as throughput efficiency for different numbers of nodes and multicast fanout under various traffic scenarios. Our findings show that for multicast traffic, the transmission capacity and multicast capacity of RPR are increased significantly, in particular for small to medium multicast group sizes, and a multicast throughput efficiency of 100% is achieved. Besides the performance gain, the proposed multicast approach is able to maintain RPR's simplicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.