Abstract

In this work we analyze the average queue backlog for transmission of a single multicast flow consisting of M destination nodes in a wireless network. In the model we consider, the channel between every pair of nodes is an independent identically distributed packet erasure channel. We first develop a lower bound on the average queue backlog achievable by any transmission strategy; for a single-hop multicast transmission, our bound indicates that the queue size must scale as at least Ω(ln(M)). Next, we generalize this result to a multihop network and obtain a lower bound on the queue backlog as it relates to the minimum-cut capacity of the network. We then analyze the queue backlog for a strategy in which random linear coding is performed over groups of packets in the queue at the source node of a single-hop multicast. We develop an upper bound on the average queue backlog for the packet-coding strategy to show that the queue size for this strategy scales as O(ln(M)). Our results demonstrate that in terms of the queue backlog for single-hop multicast, the packet coding strategy is order-optimal with respect to the number of receivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.