Abstract

Efficient routing of messages is a key to the performance of multicomputers. Multicast communication refers to the delivery of the same message from a source node to an arbitrary number of destination nodes. While multicast communication is highly demanded in many applications, most of the existing multicomputers do not directly support this service; rather it is indirectly supported by multiple one-to-one or broadcast communications, which result in more network traffic and a waste of system resources. The authors study routing evaluation criteria for multicast communication under different switching technologies. Multicast communication in multicomputers is formulated as a graph theoretical problem. Depending on the evaluation criteria and switching technologies, they study three optimal multicast communication problems, which are equivalent to the finding of the following three subgraphs: optimal multicast path, optimal multicast cycle, and minimal Steiner tree, where the interconnection of a multicomputer defines a host graph. They show that all these optimization problems are NP-complete for the popular 2D-mesh and hypercube host graphs. Heuristic multicast algorithms for these routing problems are proposed.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.