Abstract

Proposes a multicarrier orthogonal CDMA signaling scheme for a multiple-access communication system, such as the reverse channel of a cellular network, as an alternative to the multi-user interference cancellation approach. The average variance of cross-correlations between sequences is used as a measure for sequence design. The authors search for sets of sequences that minimize the probability of symbol detection error, given that there is imperfect synchronization among the signals, that is, the signals are quasi-synchronous. Orthogonal sequences based on the Sylvester-type Hadamard matrices (Walsh functions) are shown to provide a significant improvement over the case where a Hadamard (orthogonal) matrix is chosen at random. Computer searches suggest that this set of codes is optimal with respect to the above measure. The issue of chip pulse shaping is investigated. Optimal pulses designed to minimize multiple-access interference in quasi-synchronous systems are obtained for various bandwidths and are shown to provide a large improvement over the raised cosine pulses. A multicarrier signaling scheme is introduced in order to reduce chip level synchronization offsets between the users.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.