Abstract

The innate inverse Auger effect within bulk silicon can result in multiple carrier generation. Observation of this effect is reliant upon low high-energy photon reflectance and high-quality surface passivation. In the photovoltaics industry, metal-assisted chemical etching (MACE) to afford black silicon (b-Si) can provide a low high-energy photon reflectance. However, an industrially feasible and cheaper technology to conformally passivate the outer-shell defects of these nanowires is currently lacking. Here, a technology is introduced to infiltrate black silicon nanopores with a simple and vacuum-free organic passivation layer that affords millisecond-level minority carrier lifetimes and matches perfectly with existing solution-based processing of the MACE black silicon. Advancements such as the demonstration of an excellent passivation effect whilst also being low reflectance provide a new technological route for inverse Auger multiple carrier generation and an industrially feasible technical scheme for the development of the MACE b-Si solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.