Abstract

The affine Fourier transform (AFT), a general formulation of chirp transforms, has been recently proposed for use in multicarrier communications. The AFT-basedmulticarrier (AFT-MC) systemcan be considered as a generalization of the orthogonal frequency division multiplexing (OFDM), frequently used in modern wireless communications. AFT-MC keeps all important properties of OFDM and, in addition, gives a new degree of freedom in suppressing interference caused by Doppler spreading in time-varying multipath channels. We present a general interference analysis of the AFT-MC system that models both time and frequency dispersion effects. Upper and lower bounds on interference power are given, followed by interference power approximation that significantly simplifies interference analysis. The optimal parameters are obtained in the closed form followed by the analysis of the effects of synchronization errors and the optimal symbol period. A detailed interference analysis and optimal parameters are given for different aeronautical and land-mobile satellite (LMS) channel scenarios. It is shown that the AFT-MC system is able to match changes in these channels and efficiently reduce interference with high-spectral efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.