Abstract

A method based on multicanonical Monte Carlo is applied to the calculation of large deviations in the largest eigenvalue of random matrices. The method is successfully tested with the Gaussian orthogonal ensemble, sparse random matrices, and matrices whose components are subject to uniform density. Specifically, the probability that all eigenvalues of a matrix are negative is estimated in these cases down to the values of ∼10(-200), a region where simple random sampling is ineffective. The method can be applied to any ensemble of matrices and used for sampling rare events characterized by any statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.