Abstract

We present a novel implementation of the parallel tempering Monte Carlo method in a multicanonical ensemble. Multicanonical weights are derived by a self-consistent iterative process using a Boltzmann inversion of global energy histograms. This procedure gives rise to a much broader overlap of thermodynamic-property histograms; fewer replicas are necessary in parallel tempering simulations, and the acceptance of trial swap moves can be made arbitrarily high. We demonstrate the usefulness of the method in the context of a grand-multicanonical ensemble, where we use multicanonical simulations in energy space with the addition of an unmodified chemical potential term in particle-number space. Several possible implementations are discussed, and the best choice is presented in the context of the liquid–gas phase transition of the Lennard-Jones fluid. A substantial decrease in the necessary number of replicas can be achieved through the proposed method, thereby providing a higher efficiency and the possibility of parallelization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.