Abstract
A multicanonical formalism is introduced to describe the statistical equilibrium of complex systems exhibiting a hierarchy of time and length scales, where the hierarchical structure is described as a set of nested "internal heat reservoirs" with fluctuating "temperatures." The probability distribution of states at small scales is written as an appropriate averaging of the large-scale distribution (the Boltzmann-Gibbs distribution) over these effective internal degrees of freedom. For a large class of systems the multicanonical distribution is given explicitly in terms of generalized hypergeometric functions. As a concrete example, it is shown that generalized hypergeometric distributions describe remarkably well the statistics of acceleration measurements in Lagrangian turbulence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.