Abstract

A novel technique for measuring the displacements of large-span truss string structures that employs multicamera systems is proposed. The coordinates of the stereo-vision systems are unified in a single global coordinate system by employing 3D data reconstructed using close-range photogrammetry. To estimate the camera's attitude motions during an experiment, an instantaneous extrinsic rectification algorithm was developed. Experiments in which a camera was rotated and translated were conducted to verify the accuracy and precision of the developed algorithm. In addition, the proposed multicamera systems were employed to analyze a large-span truss string structure. The displacement results obtained from numerical simulations and experiments using pre-calibration and rectification methods are compared in this paper, and the stability of the camera's extrinsic parameters is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.