Abstract

A method is proposed for fused three-dimensional (3-D) shape estimation and visibility analysis of an unknown, markerless, deforming object through a multicamera vision system. Complete shape estimation is defined herein as the process of 3-D reconstruction of a model through fusion of stereo triangulation data and a visual hull. The differing accuracies of both methods rely on the number and placement of the cameras. Stereo triangulation yields a high-density, high-accuracy reconstruction of a surface patch from a small surface area, while a visual hull yields a complete, low-detail volumetric approximation of the object. The resultant complete 3-D model is, then, temporally projected based on the tracked object’s deformation, yielding a robust deformed shape prediction. Visibility and uncertainty analyses, on the projected model, estimate the expected accuracy of reconstruction at the next sampling instant. In contrast to common techniques that rely on <italic<a priori</italic< known models and identities of static objects, our method is distinct in its direct application to unknown, markerless, deforming objects, where the object model and identity are unknown to the system. Extensive simulations and comparisons, some of which are presented herein, thoroughly demonstrate the proposed method and its benefits over individual reconstruction techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.