Abstract
Inspired by the multicanonical approach to simulations of first-order phase transitions we propose for $q$-state Potts models a combination of cluster updates with reweighting of the bond configurations in the Fortuin-Kastelein-Swendsen-Wang representation of this model. Numerical tests for the two-dimensional models with $q=7, 10$ and $20$ show that the autocorrelation times of this algorithm grow with the system size $V$ as $\tau \propto V^\alpha$, where the exponent takes the optimal random walk value of $\alpha \approx 1$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.