Abstract

This article presents a set of generic tools for multibody system dynamics devoted to the study of bio-inspired locomotion in robotics. First, archetypal examples from the field of bio-inspired robot locomotion are presented to prepare the ground for further discussion. The general problem of locomotion is then stated. In considering this problem, we progressively draw a unified geometric picture of locomotion dynamics. For that purpose, we start from the model of discrete mobile multibody systems (MMSs) that we progressively extend to the case of continuous and finally soft systems. Beyond these theoretical aspects, we address the practical problem of the efficient computation of these models by proposing a Newton–Euler-based approach to efficient locomotion dynamics with a few illustrations of creeping, swimming, and flying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.