Abstract

A new payload swing control method considering the vibration of tower crane is proposed in this study. The coupling between the structural vibration and the payload swing is neglected in existing studies on tower crane swing suppression. Changes of sling length are considered as disturbances. They cause the existing methods of swing suppression method ineffectual in the actual working situation. In contrast, the structural vibration of the tower crane is taken into account in this study. At the same time, the sling length is regarded as a control variable to reduce the payload swing. A new swing suppression algorithm is proposed in conjunction with phase plane analysis method. In addition, a systematical tower crane multibody system dynamic analysis platform with changing of sling length is established to verify the effectiveness of the algorithm. The traditional finite element method is used to model the tower body and boom of tower crane while the Arbitrary Lagrange Euler Absolute Nodal Coordinate Formulation (ALE-ANCF) cable element is applied for modeling the sling. This two parts are connected with sliding joint obtaining the tower crane multibody system model. Numerical examples show that the proposed method can reduce the swing amplitude the payload effectively when considering the coupling between the structural vibration and the payload swing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.